当前位置:首页 > 百科知识 > 电子工程 > 正文

eda

EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪60年代中期从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。

  EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪60年代中期从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。

  1、简介

  20世纪90年代,国际上电子和计算机技术较为先进的国家,一直在积极探索新的电子电路设计方法,并在设计方法、工具等方面进行了彻底的变革,取得了巨大成功。在电子技术设计领域,可编程逻辑器件(如CPLDFPGA)的应用,已得到广泛的普及,这些器件为数字系统的设计带来了极大的灵活性。这些器件可以通过软件编程而对其硬件结构和工作方式进行重构,从而使得硬件的设计可以如同软件设计那样方便快捷。这一切极大地改变了传统的数字系统设计方法、设计过程和设计观念,促进了EDA技术的迅速发展。

  EDA技术就是以计算机为工具,设计者在EDA软件平台上,用硬件描述语言VHDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。EDA技术的出现,极大地提高了电路设计的效率和可操作性,减轻了设计者的劳动强度。

  2、历史与发展

  在电子设计自动化(英语:Electronic design automation,缩写:EDA)出现之前,设计人员必须手工完成集成电路的设计、布线等工作,这是因为当时所谓集成电路的复杂程度远不及现在。工业界开始使用几何学方法来制造用于电路光绘(photoplotter)的胶带。到了1970年代中期,开发人应尝试将整个设计过程自动化,而不仅仅满足于自动完成掩膜草图。第一个电路布线、布局工具研发成功。设计自动化会议(Design Automation Conference)在这一时期被创立,旨在促进电子设计自动化的发展。

  电子设计自动化发展的下一个重要阶段以卡弗尔·米德(Carver Mead)和琳·康维于1980年发表的论文《超大规模集成电路系统导论》(Introduction to VLSI Systems)为标志。这一篇具有重大意义的论文提出了通过编程语言来进行芯片设计的新思想。如果这一想法得到实现,芯片设计的复杂程度可以得到显著提升。这主要得益于用来进行集成电路逻辑仿真、功能验证的工具的性能得到相当的改善。随着计算机仿真技术的发展,设计项目可以在构建实际硬件电路之前进行仿真,芯片布线布局对人工设计的要求降低,而且软件错误率不断降低。直至今日,尽管所用的语言和工具仍然不断在发展,但是通过编程语言来设计、验证电路预期行为,利用工具软件综合得到低抽象级物理设计的这种途径,仍然是数字集成电路设计的基础。

  从1981年开始,电子设计自动化逐渐开始商业化。1984年的设计自动化会议(Design Automation Conference)上还举办了第一个以电子设计自动化为主题的销售展览。Gateway设计自动化在1986年推出了一种硬件描述语言Verilog,这种语言在现在是最流行的高级抽象设计语言。1987年,在美国国防部的资助下,另一种硬件描述语言VHDL被创造出来。现代的电子设计自动化设计工具可以识别、读取不同类型的硬件描述。根据这些语言规范产生的各种仿真系统迅速被推出,使得设计人员可对设计的芯片进行直接仿真。后来,技术的发展更侧重于逻辑综合。

  目前的数字集成电路的设计都比较模块化(参见集成电路设计、设计收敛(Design closure)和设计流(Design flow (EDA)))。半导体器件制造工艺需要标准化的设计描述,高抽象级的描述将被编译为信息单元(cell)的形式。设计人员在进行逻辑设计时尚无需考虑信息单元的具体硬件工艺。利用特定的集成电路制造工艺来实现硬件电路,信息单元就会实施预定义的逻辑或其他电子功能。半导体硬件厂商大多会为它们制造的元件提供“元件库”,并提供相应的标准化仿真模型。相比数字的电子设计自动化工具,模拟系统的电子设计自动化工具大多并非模块化的,这是因为模拟电路的功能更加复杂,而且不同部分的相互影响较强,而且作用规律复杂,电子元件大多没有那么理想。Verilog AMS就是一种用于模拟电子设计的硬件描述语言。此文,设计人员可以使用硬件验证语言来完成项目的验证工作目前最新的发展趋势是将集描述语言、验证语言集成为一体,典型的例子有SystemVerilog。

  随着集成电路规模的扩大、半导体技术的发展,电子设计自动化的重要性急剧增加。这些工具的使用者包括半导体器件制造中心的硬件技术人员,他们的工作是操作半导体器件制造设备并管理整个工作车间。一些以设计为主要业务的公司,也会使用电子设计自动化软件来评估制造部门是否能够适应新的设计任务。电子设计自动化工具还被用来将设计的功能导入到类似现场可编程逻辑门阵列的半定制可编程逻辑器件,或者生产全定制的专用集成电路。

  概念

  EDA技术的概念

  EDA技术是指以计算机为工作平台,融合了应用电子技术、计算机技术、信息处理及智能化技术的最新成果,进行电子产品的自动设计。

  利用EDA工具,电子设计师可以从概念、算法、协议等开始设计电子系统,大量工作可以通过计算机完成,并可以将电子产品从电路设计、性能分析到设计出IC版图或PCB版图的整个过程的计算机上自动处理完成。

  应用

  现在对EDA的概念或范畴用得很宽。包括在机械、电子、通信、航空航天、化工、矿产、生物、医学、军事等各个领域,都有EDA的应用。目前EDA技术已在各大公司、企事业单位和科研教学部门广泛使用。例如在飞机制造过程中,从设计、性能测试及特性分析直到飞行模拟,都可能涉及到EDA技术。本文所指的EDA技术,主要针对电子电路设计、PCB设计和IC设计

  EDA设计可分为系统级、电路级和物理实现级。

  3、设计方法

  方法

  (1) 前端设计(系统建模RTL 级描述)后端设计(FPGAASIC)系统建模。

  (2)IP复用。

  (3) 前端设计。

  (4) 系统描述:建立系统的数学模型。

  (5) 功能描述:描述系统的行为或各子模块之间的数据流图。

  (6)逻辑设计:将系统功能结构化,通常以文本、原理图、逻辑图、布尔表达式来表示设计结果。

  (7) 仿真:包括功能仿真和时序仿真,主要验证系统功能的正确性及时序特性。

  4、设计技巧

  (1)密码锁输入电路KEYB 0ARD.VHD中对各种分频信号/信号序列的设计有独到之处。该设计中,利用一个自由计数器来产生各种需要的频率,也就是先建立一个N位计数器,N的大小根据电路的需求决定。N的值越大,电路可以除频的次数就越多,这样就可以获得更大的频率变化,以便提供多种不同频率的时钟信号。若输入时钟为CLK,N位计数器的输出为Q[N-1,0],则Q(0)为CLK的2分频脉冲信号,Q(1)为CLK的4分频脉冲信号,Q(2)为CLK的6分频脉冲信号,……Q(N-1)为CLK的2N分频脉冲信号;Q(5 DOWNT04)取得的是一个脉冲波形序列,其值是依00、01、10、11、00、01周期性变化的,其变化频率为CLK的25分频,也就是32分频。我们利用以上规律即可得到各种我们所需要频率的信号或信号序列。

  (2)键盘输入去抖电路的设计程序DEBOUNCING.VHD在实际系统的开发中有较好的参考价值。

  (3)密码锁控制电路CTRL,VHD中对于数据的更新及移位方法比较好。程序中使用语句“ACC <=ACC(11 DOWNT0 0)&DATA_N”非常简洁地同时实现了ACC中的低4位用DATA_N进行更新,而高12位用ACC中的原来的低12位左移而来的处理。

  (4)在密码锁输入电路等模块的程序的设计和仿真中,为了便于观察一些中间结果,在程序中增加了一些观测输出点。这一设计技巧,对于较大的程序或多进程程序的设计非常重要。同时在仿真时,为了便于观测全局结果,降低了分频常数。同理,在进行程序仿真时,对于程序中数目较大的分频/计数/计时常数的修改是非常必要的。


内容来自百科网