碳化硅是一种半导体,在自然界中以极其罕见的矿物莫桑石的形式存在。自1893年以来已经被大规模生产为粉末和晶体,用作磨料等。在C、N、B等非氧化物高技术耐火原料中,碳化硅是应用最广泛、最经济的一种,可以称为金钢砂或耐火砂。 中国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体。
碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑为原料通过电阻炉高温冶炼而成。碳化硅在大自然也存在罕见的矿物,莫桑石。 碳化硅又称碳硅石。在当代C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一种。可以称为金钢砂或耐火砂。 碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。
结构
英文名称:silicon carbide,俗称金刚砂。纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的 α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。
碳化硅的工业制法是用优质石英砂和石油焦在电阻炉内炼制。炼得的碳化硅块,经破碎、酸碱洗、磁选和筛分或水选而制成各种粒度的产品。
种类
碳化硅有黑碳化硅和绿碳化硅两个常用的基该品种,都属α-SiC。①黑碳化硅含SiC约95%,其韧性高于绿碳化硅,大多用于加工抗张强度低的材料,如玻璃、陶瓷、石材、耐火材料、铸铁和有色金属等。②绿碳化硅含SiC约97%以上,自锐性好,大多用于加工硬质合金、钛合金和光学玻璃,也用于珩磨汽缸套和精磨高速钢刀具。此外还有立方碳化硅,它是以特殊工艺制取的黄绿色晶体,用以制作的磨具适于轴承的超精加工,可使表面粗糙度从Ra32~0.16微米一次加工到Ra0.04~0.02微米。
特性
碳化硅由于化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,除作磨料用外,还有很多其他用途,例如:以特殊工艺把碳化硅粉末涂布于水轮机叶轮或汽缸体的内壁,可提高其耐磨性而延长使用寿命1~2倍;用以制成的高级耐火材料,耐热震、体积小、重量轻而强度高,节能效果好。低品级碳化硅(含SiC约85%)是极好的脱氧剂,用它可加快炼钢速度,并便于控制化学成分,提高钢的质量。此外,碳化硅还大量用于制作电热元件硅碳棒。
碳化硅的硬度很大,莫氏硬度为9.5级,仅次于世界上最硬的金刚石(10级),具有优良的导热性能,是一种半导体,高温时能抗氧化。
碳化硅分类及性质:
基本信息列表
中文名称:碳化硅
中文别名:碳化硅晶须
英文名称:Silicon Carbide (Black)
英文别名:Silicon Carbide Black; silanyliumylidynemethanide; methylsilane; carbon(+4) cation; silicon(-4) anion
CAS:409-21-2
EINECS:206-991-8
分子式:SiC
分子量:40.0962
碳化硅至少有70种结晶型态。α-碳化硅为最常见的一种同质异晶物,在高于2000 °C高温下形成,具有六角晶系结晶构造(似纤维锌矿)。β-碳化硅,立方晶系结构,与钻石相似,则在低于2000 °C生成,结构如页面附图所示。虽然在异相触媒担体的应用上,因其具有比α型态更高之单位表面积而引人注目,但直至今日,此型态尚未有商业上之应用。
因其3.2的比重及高的升华温度(约2700 °C),碳化硅很适合做为轴承或高温炉之原料物件。在任何已能达到的压力下,它都不会熔化,且具有相当低的化学活性。由于其高热导性、高崩溃电场强度及高最大电流密度,在半导体高功率元件的应用上,不少人试着用它来取代硅[1]。此外,它与微波辐射有很强的偶合作用,并其所有之高升华点,使其可实际应用于加热金属。
纯碳化硅为无色,而工业生产之棕至黑色系由于含铁之不纯物。晶体上彩虹般的光泽则是因为其表面产生之二氧化硅保护层所致。
历史沿革
碳化硅是由美国人艾奇逊在1891年电熔金刚石实验时,在实验室偶然发现的一种碳化物,当时误认为是金刚石的混合体,故取名金刚砂,1893年艾奇逊研究出来了工业冶炼碳化硅的方法,也就是大家常说的艾奇逊炉,一直沿用至今,以碳质材料为炉芯体的电阻炉,通电加热石英SIO2和碳的混合物生成碳化硅。
关于碳化硅的几个事件
1905年 第一次在陨石中发现碳化硅
1907年 第一只碳化硅晶体发光二极管诞生
1955年 理论和技术上重大突破,LELY提出生长高品质碳化概念,从此将SiC作为重要的电子材料
1958年 在波士顿召开第一次世界碳化硅会议进行学术交流
1978年 六、七十年代碳化硅主要由前苏联进行研究。到1978年首次采用“LELY改进技术”的晶粒提纯生长方法
1987年~至今以CREE的研究成果建立碳化硅生产线,供应商开始提供商品化的碳化硅基
产能情况
我国有碳化硅冶炼企业200多家,年生产能力220多万吨(其中:绿碳化硅块120多万吨,黑碳化硅块约100万吨)。冶炼变压器功率大多为6300~12500kVA,最大冶炼变压器为32000kVA。加工制砂、微粉生产企业300多家,年生产能力200多万吨。2012年,我国碳化硅产能利用率不足45%。约三分之一的冶炼企业有加工制砂微粉生产线。碳化硅加工制砂微粉生产企业主要分布在河南、山东、江苏、吉林、黑龙江等省。
我国碳化硅冶炼生产工艺、技术装备和单吨能耗达到世界领先水平。黑、绿碳化硅原块的质量水平也属世界级。我国碳化硅与世界先进水平的差距主要集中在四个方面:一是在生产过程中很少使用大型机械设备,很多工序依靠人力完成,人均碳化硅产量较低;二是在碳化硅深加工产品上,对粒度砂和微粉产品的质量管理不够精细,产品质量的稳定性不够;三是某些尖端产品的性能指标与发达国家同类产品相比有一定差距;四是冶炼过程中一氧化碳直接排放。国外主要企业基本实现了封闭冶炼,而我国碳化硅冶炼几乎全部是开放式冶炼,一氧化碳全部直排。2012年,我国企业开发出了封闭冶炼技术,实现了一氧化碳全部回收,但是距离全行业普及还有很长的路要走。
根据中国机床工业协会磨料磨具专委会碳化硅专家委员会的数据,截至2012年底,全球碳化硅产能达260万吨以上,产能达到1万吨以上的国家有13个,占全球总产能的98%。其中中国碳化硅产能达到220万吨,占全球总产能的84%。
市场需求
我国碳化硅冶炼企业主要分布在甘肃、宁夏、青海、新疆、四川等地,约占总产能85%。
2012年在中国经济发展速度放缓的情况下,生产情况普遍不理想,加之光伏企业举步维艰,碳化硅作为耐材、磨料和光伏行业的基础原材料,出口和内销均大幅下滑。绿碳化硅微粉加工企业更是身陷光伏企业的债务链条,多数冶炼企业没有开工,或者短暂开工后即停产。
应用领域
碳化硅主要有四大应用领域,即:功能陶瓷、高级耐火材料、磨料及冶金原料。碳化硅粗料已能大量供应,不能算高新技术产品,而技术含量极高 的纳米级碳化硅粉体的应用短时间不可能形成规模经济。
⑴ 作为磨料,可用来做磨具,如砂轮、油石、磨头、砂瓦类等。
⑵ 作为冶金脱氧剂和耐高温材料。
⑶ 高纯度的单晶,可用于制造半导体、制造碳化硅纤维。
主要用途:用于3-12英寸单晶硅、多晶硅、砷化钾、石英晶体等线切割。太阳能光伏产业、半导体产业、压电晶体产业工程性加工材料。
用于半导体、避雷针、电路元件、高温应用、紫外光探测器、结构材料、天文、碟刹、离合器、柴油微粒滤清器、细丝高温计、陶瓷薄膜、裁切工具、加热元件、核燃料、珠宝、钢、护具、催化剂载体等领域。
磨料磨具
主要用于制作砂轮、砂纸、砂带、油石、磨块、磨头、研磨膏及光伏产品中单晶硅、多晶硅和电子行业的压电晶体等方面的研磨、抛光等。
化工
可用做炼钢的脱氧剂和铸铁组织的改良剂,可用做制造四氯化硅的原料,是硅树脂工业的主要原料。碳化硅脱氧剂是一种新型的强复合脱氧剂,取代了传统的硅粉碳粉进行脱氧,和原工艺相比各项理化性能更加稳定,脱氧效果好,使脱氧时间缩短,节约能源,提高炼钢效率,提高钢的质量,降低原辅材材料消耗,减少环境污染,改善劳动条件,提高电炉的综合经济效益都具有重要价值。
“三耐”材料
利用碳化硅具有耐腐蚀、耐高温、强度大、导热性能良好、抗冲击等特性,碳化硅一方面可用于各种冶炼炉衬、高温炉窑构件、碳化硅板、衬板、支撑件、匣钵、碳化硅坩埚等。
另一方面可用于有色金属冶炼工业的高温间接加热材料,如竖罐蒸馏炉、精馏炉塔盘、铝电解槽、铜熔化炉内衬、锌粉炉用弧型板、热电偶保护管等;用于制作耐磨、耐蚀、耐高温等高级碳化硅陶瓷材料;还可以制做火箭喷管、燃气轮机叶片等。此外,碳化硅也是高速公路、航空飞机跑道太阳能热水器等的理想材料之一。
导热材料
SiC材料的导热性与大多数介电固体一样,主要受热弹性波(称为声子)传递的影响。SiC 材料的导热率主要取决于:1)烧结助剂的数量、化学计量比、化学性质以及相关的晶界厚度和结晶度;2)晶粒尺寸;3)SiC 晶体中杂质原子的类型和浓度;4)烧结气氛;5)烧结后的热处理等。
SiC 具有高导热、禁带宽度大、电子饱和迁移速率高和临界击穿电场高等优异性质,其优异的综合性能弥补了传统半导体材料与器件在实际应用中的不足,在电动汽车、手机 通信 芯片等领域具有广泛的应用前景。由于 SiC 有着更高的可靠性、更高的工作温度,更小的尺寸和更高的电压承受能力等,可应用于主驱板、车载充电机和电源模块等功率器件,从而可大幅度提高效率,给电动汽车增加续航能力。同时,SiC 具有良好的导热性能,使用 SiC 半导体功率器件可以缩小电池尺寸以及更有效地转换能量,从而降低总成器件的成本。SiC 陶瓷作为一种高性能结构陶瓷材料,具有优异的热性能,可广泛应用于耐高温、加热与热交换工业领域。
钢铁
利用碳化硅的耐腐蚀,抗热冲击耐磨损,导热好的特点,用于大型高炉内衬提高了使用寿命。
冶金选矿
碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道、叶轮、泵室、旋流器、矿斗内衬的理想材料,其耐磨性能是铸铁、橡胶使用寿命的5-20倍也是航空飞行跑道的理想材料之一。
节能
利用良好的导热和热稳定性,作热交换器,燃耗减少20%,节约燃料35%,使生产率提高20-30%。
磨料粒度及其组成按GB/T2477--83。磨料粒度组成测定方法按GB/T2481--83。
珠宝
合成碳化硅(Synthetic Moissanite)又名合成莫桑石、合成碳硅石(化学成分SiC),色散0.104,比钻石(0.044)大,折射率2.65-2.69(钻石2.42),具有与钻石相同的金刚光泽,“火彩”更强,比以往任何仿制品更接近钻石。
中国产地
长白山脉、河南、河北石家庄灵寿县、青海、甘肃、宁夏、新疆、四川、哈尔滨、湖南、贵州、湖北丹江口等地。
碳化硅半导体
碳化硅半导体是一种由硅(Si)和碳(C)组成的化合物半导体材料,属于宽带隙(WBG)材料系列。以下是关于碳化硅半导体的详细解析:
一、基本特性
化学成分与结构:碳化硅(SiC)是共价键晶体,有闪锌矿型和铅锌矿型两种结晶形式。其密度约为3.2g/cm³,熔点高达2830℃,本征电阻率在(1~0.7)Ω·cm之间,禁带宽度在2.99~42.6eV范围内,电子迁移率可达300~900cm²/(V·s),介电常数约为9.72~10.32。
物理性能:碳化硅具有高禁带宽度、高电导率、高热导率、低通损耗等优异性能,特别是其宽禁带特性(约为硅的3倍)和高热导率(约为硅的5倍),使得碳化硅器件能够在高温、高频、高压条件下工作,且具有较高的功率密度和较低的能量损耗。
二、产业链与应用
产业链:碳化硅产业链包括原材料、衬底、外延材料以及器件和模块等关键环节。上游主要原材料包括硅烷、氮化硼等,经过加工后转变为碳化硅衬底,进一步可以得到外延材料。外延片经过光刻和蚀刻等精细步骤成为芯片,封装后最后就成为了器件产品。
应用领域:碳化硅半导体广泛应用于新能源汽车、光伏、电网、5G通信、国防军工、航空航天等领域。在新能源汽车领域,碳化硅功率器件(如MOSFET、SBD等)被用于主逆变器、DC-DC转换器、车载充电器等关键部件,能够显著降低能量损耗、提高系统效率和可靠性。在光伏领域,碳化硅器件用于逆变器中,能够提高转换效率和稳定性。在电网领域,碳化硅器件用于高压直流输电(HVDC)、柔性交流输电系统(FACTS)等领域,能够提高电网的灵活性和可靠性。
三、技术挑战与市场前景
技术挑战:尽管碳化硅半导体具有诸多优异性能,但其制备工艺复杂、成本高昂,仍是制约其大规模应用的主要因素。此外,碳化硅器件的封装技术也面临挑战,传统的硅功率器件封装技术难以满足碳化硅器件的高频、高温、高功率密度等特性要求。
市场前景:随着新能源汽车、光伏、智能电网等行业的快速发展,碳化硅半导体的市场需求持续增长。据TrendForce数据显示,2023年碳化硅功率元件市场规模达到22.8亿美元,同比增长41.4%。预计到2026年,市场规模有望增长至53.3亿美元。同时,国内碳化硅产业链企业正加速国产替代进程,有望在全球市场中占据更大份额。
综上所述,碳化硅半导体作为一种新型的高性能半导体材料,在多个领域展现出巨大的应用潜力和市场前景。随着技术的不断进步和成本的逐步降低,碳化硅半导体有望在更多领域实现广泛应用。
内容来自百科网