现场总线和现场总线控制系统的定义
现场总线是顺应智能现场仪表而发展起来的一种开放型的数字通信技术,其发展的初衷是用数字通信代替一对一的I/O连接方式,把数字通信网络延伸到工业过程现场。根据IEC和美国仪表协会ISA的定义,现场总线是连接智能现场设备和自动化系统的数字式、双向传输、多分支结构的通信网络,它的关键标志是能支持双向、多节点、总线式的全数字通信。
随着现场总线技术与智能仪表管控一体化(仪表调校、控制组态、诊断、报警、记录)的发展,这种开放型的工厂底层控制网络构造了新一代的网络集成式全分布计算机控制系统,即现场总线控制系统(简称FCS)。FCS作为新一代控制系统,采用了基于开放式、标准化的通信技术,突破了DCS采用专用通信网络的局限;同时还进一步变革了DCS中“集散”系统结构,形成了全分布式系统架构,把控制功能彻底下放到现场。
简而言之,现场总线将把控制系统最基础的现场设备变成网络节点连接起来,实现自下而上的全数字化通信,可以认为是通信总线在现场设备中的延伸,把企业信息沟通的覆盖范围延伸到了工业现场。
现场总线的技术特征
传统计算机控制系统中,现场仪表和控制器之间均采用一对一的物理连接。这种传输方式一方面要给现场安装、调试及维护带来困难,另一方面难以实现现场仪表的在线参数整定和故障诊断,无法实时掌握现场仪表的实际情况,使得处于最底层的模拟变送器和执行机构成了计算机控制系统中最薄弱的环节。
现场总线采用数字信号传输,允许在一条通信线缆上挂接多个现场设备,而不再需要A/D、D/A等I/O组件。当需要增加现场控制设备时,现场仪表可就近连接在原有的通信线上,无需增设其它任何组件。
从结构上看,DCS实际上是“半分散”、“半数字”的系统,而FCS采用的是一个“全分散”、“全数字”的系统架构。FCS的技术特征可以归纳为以下几个方面:①全数字化通信――现场信号都保持着数字特性,现场控制设备采用全数字化通信。②开放型的互联网络――可以与任何遵守相同标准的其它设备或系统相连。③互可操作性与互用性――互操作性的含义是指来自不同制造厂的现场设备可以互相通信、统一组态;而互用性则意味着不同生产厂家的性能类似的设备可进行互换而实现互用。④现场设备的智能化――总线仪表除了能实现基本功能之外,往往还具有很强的数据处理、状态分析及故障自诊断功能,系统可以随时诊断设备的运行状态。⑤系统架构的高度分散性――它可以把传统控制站的功能块分散地分配给现场仪表,构成一种全分布式控制系统的体系结构。
现场总线国际标准化概况
现场总线标准经历了十多年的纷争,1999年8月形成了一个由8个类型组成的IEC61158现场总线国际标准,分别是:TS61158、ControlNet、PROFIBUS、P-Net、FF-HSE、SwiftNet、WorldFIP和Interbus。IEC61158国际标准只是一种模式,它不改变各组织专有的行规,各种类型都是平等的,其中Type2~Type8需要对Type1提供接口,而标准本身不要求Type2~Type8之间提供接口,目的就是为了保护各自的利益。2001年8月制定出由10种类型现场总线组成的第三版现场总线标准,在原来8种现场总线基础上增加FFH1和PROFInet。
归纳起来,P-Net和SwiftNe是用于有限领域的专用现场总线,ControlNet、PROFIBUS、WorldFIP和Interbus是由PLC为基础的控制系统发展起来的现场总线,FFH1和HSE是由传统DCS发展起来的现场总线,总线功能较为复杂和全面,它们是IEC推荐的国际现场总线标准。目前在楼宇自控领域,Lonworks和CAN总线具有一定的优势;在过程自动化领域,过渡型的HART协议也将是近期内智能化仪表主要的过渡通信协议。相比较而言,FF和PROFIBUS是过程自动化领域中最具竞争力的现场总线,它们得到了众多著名自动化仪表设备厂商的支持,也具有相当广泛的应用基础。
基金会现场总线
按照基金会总线组织的定义,FF总线是一种全数字、串行、双向传输的通信系统,是一种能连接现场各种现场仪表的信号传输系统,其最根本的特点是专门针对工业过程自动化而开发的,在满足要求苛刻的使用环境、本质安全、总线供电等方面都有完善的措施。为此,有人称FF总线为专门为过程控制设计的现场总线。
在FF协议标准中,FF分为低速H1总线和高速H2总线。H1主要针对过程自动化,传输速率31.25Kbps,传输距离可达1900m(可采用中继器延长),支持总线供电和本质安全防爆。高速总线协议H2主要用于制造自动化,传输速率分为1Mbps和2.5Mbps两种。但原来规划的H2高速总线标准现在已经被现场总线基金会所放弃,取而代之的是基于以太网的高速总线HSE。
FF总线的通信模型
为了实现通信系统的开放性,FF通信模型参考了OSI模型。
H1总线的通信模型包括物理层、数据链路层、应用层,并在其上增加了用户层。物理层采用了IEC61158-2的协议规范;数据链路层DLL规定如何在设备间共享网络和调度通信,通过链路活动调度器LAS来管理现场总线的访问;应用层则规定了在设备间交换数据、命令、事件信息以及请求应答中的信息格式。H1的应用层分为两个子层――总线访问子层FAS和总线报文规范子层FMS,功能块应用进程只使用FMS,FAS负责把FMS映射到DLL。用户层则用于组成用户所需要的应用程序,如规定标准的功能快、设备描述等。不过,数据链路层和应用层往往被看作为一个整体,统称为通信栈。
HSE采用了基于Ethernet和TCP/IP的六层协议结构的通信模型。其中,一~四层为标准的Internet协议;第五层是现场设备访问会话,为现场设备访问代理提供会话组织和同步服务;第七层是应用层,也划分为FMS和现场设备访问FDA二个子层,其中FDA的作用与H1的FAS相类似,也是基于虚拟通信关系为FMS提供通信服务。
H1总线协议
H1总线的物理层根据IEC和ISA标准定义,符合ISAS50.02物理层标准、IEC1158-2物理层标准以及FF-81631.25Kbps物理层行规规范。当物理层从通信栈接收报文时,对数据帧加上前导码和定界码,并对其实行数据编码,再经过发送驱动器把所产生的物理信号传送到总统的传输媒体上。相反,在接收信号时,需要进行反向解码。
现场总统采用曼彻斯特编码技术将数据编码加载到直流电压或电流上形成“同步串行信号”。前导码是一个8位的数字信号10101010,接收器采用这一信号同步其内部时钟。起始界定码和结束界定码标明了现场总线信息的起点和终点,长度均为8个时钟周期,二者都是由“0”、“1”、“N+”、“N-”按规定的顺序组成。
表示了H1总线的配置思想,总线两端分别连接一个终端器,形成对31.25KHz信号的通带电路。发送设备产生的信号是31.25KHz、峰峰值为15~20mA的电流信号;传送给相当于50Ω的等效负载,产生一个调制在直流电源电压上的0.75~1V的峰峰电压。H1支持总线供电和非总线供电二种方式。
通信栈包括数据链路层DLL、现场总线访问子层FAS和现场总线报文规范FMS三部分。
DLL最主要的功能是对总线访问的调度,通过链路活动调度器LAS来管理总线的访问,每个总线段上有一个LAS。H1总线的通信分为受调度/周期性通信和非调度/非周期性通信二类。前者一般用于在设备间周期性地传送测量和控制数据,其优先级最高,其它操作只在受调度传输之间进行。
FAS子层处于FMS和DLL之间,它使用DLL的调度和非调度特点,为FMS和应用进程提供报文传递服务。FAS的协议机制可以划为三层:FAS服务协议机制、应用关系协议机制、DLL映射协议机制,它们之间及其与相邻层的关系如图4-6所示。FAS服务协议机制负责把发送信息转换为FAS的内部协议格式,并为该服务选择一个合适的应用关系协议机制。应用关系协议机制包括客户/服务器、报告分发和发布/接收三种由虚拟通信关系VCR来描述的服务类型,它们的区别主要在于FAS如何应用数据链路层进行报文传输。DLL映射协议机制是对下层即数据链路层的接口。它将来自应用关系协议机制的FAS内部协议格式转换成数据键路层DLL可接受的服务格式,并送给DLL,反之亦然。
FMS描述了用户应用所需要的通信服务、信息格式和建立报文所必需的协议行为。针对不同的对象类型,FMS定义了相应的FMS通信服务,用户应用可采用标准的报文格式集在现场总线上相互发送报文。
用户层定义了标准的基于模块的用户应用,使得设备与系统的集成与互操作更加易于实现。用户层由功能块和设备描述语言两个重要的部分组成。
FF总线的网络拓扑
FF现场总线的网络拓扑比较灵活,通常包括点到点型拓扑、总线型拓扑、菊花链型拓扑、树型拓扑以及这多种拓扑组合在一起构成的混会型结构。其中,总线线型和树型拓扑在工程中使用较多。在总线型结构中,总线设备通过支线电缆连接到总线段上,支线长度一般小于l20米,适用于现场设备物理分布比较分散、设备密度较低的应用场合,分支上现场设备的拆装对其它设备不会产生影响。在树型结构中,现场总线上的设备都是被独立连接到公共的接线盆、端子、仪表板或I/O卡,适用于现场设备局部比较集中的应用场合。
PROFIBUS现场总线
PROFIBUS共包括PROFIBUS-FMS、PROFIBUS-DP和PROFIBUS-PA三个兼容系列,各系列的协议结构如图4.9所示。FMS定义了物理层、数据链路层和应用层和用户接口,物理层提供了光纤和RS485两种传输技术。DP定义了物理层、数据链路层和用户接口,其中的物理层和数据链路层与FMS中的定义完全相同,二者采用了相同的传输技术和统一的总线控制协议(报文格式)。PA主要应用于过程控制领域,相当于FF的H1总线,它可支持总线供电和本质安全,当使用分段耦合器,PA装置能很方便的连接到DP网络上。
PROFIBUS现场总线是世界上应用最广泛的现场总线技术之一,既适合于自动化系统与现场I/O单元的通信,也可用于直接连接带有接口的各种现场仪表及设备。DP和PA的完美结合使得PROFIBUS现场总线在结构和性能上优越于其它现场总线。
数据传输技术
PROFIBUS提供了RS485传输、IEC1158-2传输和光纤传输三种类型。
RS-485传输用于PROFIBUS-DP/-FMS,其最大传输速率可达12Mbps,在不加中继的情况下,传输速率与总线长度的对应关系如下表所示:
数据IEC1158-2的传输技术用于PROFIBUS-PA,是一种位同步协议,通过±9mA对基本电流(约10mA)的调制,以31.25kbps的速率传输。
PROFIBUS系统要桥接更长的距离或在电磁干扰很大的环境下应用时,可使用光纤导体(塑料和玻璃)传输,光链路插头可以实现RS485信号和光纤导体信号的相互转换。
总线存取协议
PROFIBUS总线包括的三个兼容系列均使用一致的总线存取协议,这是一种包括主站之间的令牌方式和主站与从站之间的主从方式的混合协议,如图4.10所示。
令牌环是所有主站的组织链,按照它们的地址构成逻辑环。在令牌环中,令牌在逻辑环中循环一周的最长时间是事先规定的,令牌需要在规定的时间内按照地址的升序在各主站中依次传递。
主从方式允许主站在得到总线存取令牌时与从站进行通信,每个主站均可向从站发送或索取信息。当某主站得到令牌报文后,该主站可在一定时间内执行主站工作。在这段时间内,它可依照主从关系表与所有从站通信,也可依照主主关系表与所有主站通信。
DP/PA的连接
基于IEC1158-2传输技术总线段与基于RS485传输技术总线段可以通过耦合装置相连,耦合器使二者信号相适配。每段通常配一个电源装置,电源装置经耦合器和PA总线为现场设备提供电源,这种供电方式可以限制PA总线段上的电流和电压。如果需要外接电源设备,必须用适当的隔离装置,将总线供电设备与外接电源设备连接在本质安全总线上,此时总线上的最大供电电压和最大供电电流均具有明确的规定。按防爆等级和总线供电装置,总线上的站点数量也将受到限制。
PROFIBUS的网络拓扑可以是总线型、树型和两种拓扑的混合。线型结构沿着总线电缆连接各个站点,树型结构允许现场设备并联地接在现场配电箱上。混合拓扑结构适合多数实际系统的要求,它可以使总线的结构和长度趋于最优。
PROFINet简介
我们知道,当前的工业网络已逐渐向高层IT系统的融合甚至通过Internet实现全球化联网的趋势发展,PROFINet正是体现了现场总线技术纵向集成的一种透明性理念。
为了保持与自动化系统较高层的一致性,PROFINet选用以太网作为通信媒介,一方面它可以把基于通用的PROFIBUS技术的系统无缝地集成到整个系统中,另一方面它也可以通过代理服务器实现PROFIBUS-DP及其它现场总线系统与PROFINet系统的简单集成。
在整个协议架构中,独立于制造商的工程设计系统对象ES-Object模型和开放的、面向对象的PROFINet运行期(runtime)模型是PROFINet定义的两个关键模型。
工程设计系统对象模型用于对多制造商工程设计方案做出规定,提供用户友好的PROFINet系统组态。运行期模型则以具有以太网标准机制的通信功能为基础,提供了一种优化的DCOM机制,作为用于硬实时通信应用领域的一种选择。
PROFINet部件以对象的形式出现,自动化解决方案包含在运行期进行通信的自动化对象中,即运行期自动化对象RT-AUTO。在工程设计领域,一旦无需对通信编程而只需进行很方便地组态,创建自动化解决方案就变得相当简单。
PROFINet为这些应用提供了两种集成方案,如图4.12。
如果现场总线的主站具备PROFINet的能力,这可通过将以太网接口和PROFINet运行期软件的端口直接集成到现场总线主站的CPU中。否则,PROFIBUS也可以通过代理服务器实现与PROFInet的集成。原则上其它的现场总线如:FF、Interbus等通常都可以这种方式集成到PROFINet领域。
内容来自百科网