三大主流白光LED荧光粉性能各有千秋
据了解,现在业界公认效率最佳产生白光的组合仍是日亚化学利用蓝光LED芯片搭配YAG:Ce黄光荧光粉,此外,欧司朗光电半导体(Osram Opto Semiconductors)所发展的黄光荧光粉TAG表现则较为逊色;另外,利用蓝光LED芯片搭配绿色与红色的硫化物或氧化物荧光粉亦是另一种可行的选项。
一般业界所公认可提供白光LED使用的优质荧光粉须同时具备对LED芯片发射波长具强烈吸收与高度光→光转换效率;物理化学性质安定且无毒性,抗氧化、抗潮、不与封装树脂、芯片与金属导线产生作用;优良温度荧光淬灭特性(至少120℃以上);搭配LED的发光特性(发射波长与色度);以及粒径适中且分布范围窄、分散性良好,若过粗或过细会导致光效差等条件。
石榴石型氧化物荧光粉
日本的日亚化学所揭露的专利对石榴石型氧化物荧光粉化学组成涵盖甚广,尤其在钇铝石榴石黄光荧光粉成分Y3Al5O12:Ce3+进行系统化调整,其中将Y3+以Tb3+或Gd3+加以置换或将其中Al3+以Ga3+加以置换而衍生为多系列(Y,Gd,Sm)3 (Al,Ga)5O12:Ce3+可以搭配不同蓝光波长(440~480纳米)芯片的黄橙光荧光粉。此外为改善利用YAG:Ce系列荧光粉所制作白光LED之演色性无法与传统白光光源比较之缺失,或者色温须要调变,必要时可在荧光粉的配方中加入表1中所列举红光荧光粉,才能加以有效改善。
另一方面,Philips-Lumileds曾经采用460纳米蓝光LED搭配绿光SrGa2S4:Eu2+与红光SrS:Eu2+荧光粉,制作演色系数(Ra)82~87,且色温为3,000~6,000K之白光LED,此为图1中构装方式(c)之实施例。近年来,由于近紫外(390~410纳米)与紫外光(365~385纳米)LED芯片的技术逐渐成熟,并顺利量产,白光LED已经逐渐成熟。尤其全球光电大厂如德国欧司朗光电、日本日亚化学与丰田合成(Toyada-Gosei)、美国Philips-Lumileds与Cree等多家公司无不积极投入。值得注意的是美国Cree已生产出50毫瓦的385~405纳米紫外光LED;日亚已量产365、375与385纳米波长LED与其生产白光LED的Ra值已≧90,具有高效率、高Ra值与多重色温的白光LED照明时代已指日可期。
硅酸盐荧光粉
硅酸盐荧光粉的发展源自1940年代初期美国通用(GE)的Zn2SiO4:Mn2+,历经(Sr, Ba,Mg)3Si2O7:Pb2+(1949)、BaSi2O5:Pb2+ (1960)、Sr4Si3O8Cl4:Eu2+(1967)、BaSi2O5:Pb2+(1960)等多种材料的发展,至1998年(Ba,Si)2SiO4:Eu2+的发现之后,硅酸盐荧光粉在白光LED的应用进展神速,如今已有多种可用于白光LED的材料,表3列举并比较常见的硅酸盐荧光粉的光谱特性。目前主要硅酸盐荧光粉的重要专利仍为丰田合成、日亚化学、欧司朗光电半导体与美国Intematix等公司所拥有。
在荧光粉转换白光LED的制作上,硅酸盐为另一种重要新选择,因该材料具有对紫外、近紫外、蓝光具有显著的吸收;在所有黄光荧光体中,具有最高辉度值;输出量子效率高于90%,并仍有改善空间;量产制备成本低廉;在紫外LED应用时,具有高温度稳定性(至少120℃以上);具有具物理(如高强辐射)与化学稳定性,抗氧化、抗潮、不与封装树脂作用;以及可搭配紫外/蓝光芯片,可供制作各种色温的白光LED的条件。
图2(a)与(b)分别显示具有高度弹性激发频宽的硅酸盐荧光粉激发光谱和Sr2+掺杂量对(Ba1-XSrX)2SiO4:Eu2+硅酸盐荧光体发光波长的效应。上述光谱学特性显示(Ba1-XSrX)2SiO4:Eu2+荧光粉之独特性,也说明为何硅酸盐荧光粉成为目前业界制作白光LED的热门材料之一。
荧光粉的热消光(Thermal Quenching Of Luminescence)或温度安定性素来为散热问题所困扰的高功率白光LED所重视的,德国公司Litec的Roth博士针对(Ba1-XSrX)2SiO4:Eu2+硅酸盐与YAG:Ce荧光粉热消光特性的比较,研究结果显示两种荧光粉的热安定性不分轩轾,但在120℃以上时,硅酸盐之热消光较为明显,此项特性值得注意。
氮化物与氮氧化物荧光粉
1980年代,金属氮(氧)化物早期多作为结构或功能性陶瓷使用,其在白光LED的应用直至近几年才开始被注意,目前全世界氮化物与氮氧化物荧光粉的领先者主要为荷兰Technical University of Eindhoven、日本National Institute for Materials Science(NIMS)、日本三菱化学公司、日本Ube工业与欧司朗光电半导体等单位,虽然氮化物或氮氧化物荧光粉的制程通常需要高温、高压的条件,但本项荧光粉由于具有诸多特点得以展现在白光LED应用的潜力,包括多样化的晶体结构与化学组成,发光波长可调变;相当物理与化学稳定特性;可供紫外、近紫外或蓝光激发;荧光发射光谱具有极大的波长红位移;极小的温度荧光淬灭效应(至少>120℃);具有高度共价性键结(窄能隙),呈现强烈电子云扩散效应与晶场分裂效应;以及具有高度凝聚阴离子网状晶体结构,减弱温度对荧光淬灭效应等。
由于LED照明组件要求高演色性与安定性,氮化物与氮氧化物较氧化物拥有共价结构所衍生较强的电子云扩散(Nephelauxetic)效应,因而此种系列的白光LED用荧光粉逐渐被重视。德国欧司朗光电半导体早在1999年于欧盟欧洲专利办公室(European Patent Office)提出申请红黄光(Ca,Sr,Ba)xSiyNz:Eu氮化物荧光粉相关专利,其中可应用于蓝光与紫外光LED的SrzSi5N8:Eu与 SrSi7N10:Eu均属之。
日本国际化学材料协会(National Institute for Materials Science, NIMS)于2001年提出申请能产生多光色的Cax(Eu, Tb,Yb,Er)y(Si,Al)12(O,N)16、高发光效率的氮氧化物荧光粉专利,此种材料涵盖掺杂各种稀土离子(如Eu2+、Ce3+、Dy3+、Eu3+与Mn2+)的橘黄光Ca-α-SiAlON以及绿光MSi2N2O2:Eu2+等荧光材料。
除了目前较热门氮化物CaAlSiN3与氮氧化物SrSi2O2N2:之外,最近日本三菱化学公司多位研究人员建议以橘光(Sr,Ca)AlSiN3:Eu2+氮化物可以搭配绿光CaSc2O4:Ce3+或Ca3(Sc,Mg)2Si3O12:Ce3+作为一般照明使用;而该公司所研发新颖绿光氮氧化物Ba3Si6O12N2:Eu可取代CaSc2O4:Ce3+氧化物并与搭配橘光CaAlSiN3:Eu2+氮硅化物,以应用于液晶面板背光源,上述建议的原理系以高亮度和高演色性作为照明与显示最大的区别。其中可供紫外、蓝光激发的新颖氮氧化物Ba3Si6O12N2:Eu组成、晶体结构复杂且合成条件困难,其特征为在波长525纳米之处有更小的半高全宽(FWHM)(~68纳米)
值得一提的是,日本NIMS研究人员曾试制作由红(CaAlSiN3:Eu2+)、黄(α-SiAlON:Eu2+)、与绿光(β-SiAlON:Eu2+)荧光粉搭配蓝色LED芯片构成的白光LED。其中CaAlSiN3:Eu2+可将芯片460纳米的蓝光转换为650纳米红光,β-SiAlON:Eu2+可将其转换成540纳米绿光,并可以加入α-SiAlON:Eu2+黄光,之后调变红、绿、蓝光构成比例,产生符合彩色滤光片色彩特性的光源。NIMS研究人员指出,上述白光LED作为液晶面板背照灯源时,色域范围模拟值NTSC为91%,比现行使用YAG荧光粉之白光LED的72%,色彩表现更为丰富,由此可见,以红、绿、蓝、黄光氮氧化物制作白光LED的无穷潜力。
白光LED热门的钇铝石榴石型、硅酸盐以及氮(氧)化物等三大类荧光粉
白光LED热门的钇铝石榴石型、硅酸盐以及氮(氧)化物等三大类荧光粉转换白光LED的技术进展与新颖荧光粉的利用与研发息息相关,目前国际白光LED荧光粉的产学研发虽未停滞,但其动能已趋近饱和,且全球光电大厂白光LED荧光粉相关的专利布局超乎想象完整,由于白光LED照明的产业发展速度与进程远超过预期,未来对荧光粉的需求与日俱增且备感迫切,国内产学界对于荧光粉相关的研发无疑将面临关键性的压力与局限,如何突破目前的现况,并进一步强化国内白光LED产业在全球的竞争力,实有赖于产学界更加紧密的合作与激励,才能开创LED产业光明的未来。
内容来自百科网