基于时空特征自适应融合网络的加密流量分类方法
中南民族大学学报(自然科学版)
页数: 9 2024-04-19
摘要: 加密流量数据包之间具有明显的时序特征,现有方法很难提取出流量数据中隐含的时序特征,未能将时序特征与空间特征有效地融合,公开数据集大都存在类间样本不平衡的问题,给加密流量的准确分类带来巨大挑战.针对上述问题,提出了一种包含时空特征提取模块和难样本学习模块的卷积神经网络模型.时空特征提取模块先利用不同维度的卷积核来同步学习流量数据包序列中的时序和空间特征,再利用自适应加权融合策略将... (共9页)