基于改进多因子优化蝙蝠算法的网络入侵检测方法
郑州大学学报(工学版)
页数: 10 2024-06-13
摘要: 针对高维网络数据存在大量冗余和不相关的特征导致入侵检测准确率低的问题,提出了一种改进的多因子优化蝙蝠算法(IMFBA)用于数据特征选择,筛选出具有最大信息量的特征子集,提高网络入侵检测精度。首先,在多因子优化框架下设计全局特征选择任务和局部特征选择任务,并通过基于蝙蝠算法所设计的选型交配和垂直文化传播算子实现不同任务间的信息共享,从而帮助全局特征选择任务更快锁定最优解空间,提高... (共10页)