基于梯度回溯的联邦学习搭便车攻击检测
计算机研究与发展
页数: 14 2024-05-23
摘要: 随着车联网的发展,快速增长的智能汽车产生了海量的用户数据.这些海量的数据对训练智能化的车联网应用模型有极高的价值.传统的智能模型训练需要在云端集中式地收集原始数据,这将消耗大量通信资源并存在隐私泄露和监管限制等问题.联邦学习提供了一种模型传输代替数据传输的分布式训练范式用于解决此类问题.然而,在实际的联邦学习系统中,存在恶意用户通过伪造本地模型骗取服务器奖励的情况,即搭便车攻击... (共14页)