面向小型边缘计算的深度可分离神经网络模型与硬件加速器设计
计算机应用研究
页数: 6 2023-11-02
摘要: 神经网络参数量和运算量的扩大,使得在资源有限的硬件平台上流水线部署神经网络变得更加困难。基于此,提出了一种解决深度学习模型在小型边缘计算平台上部署困难的方法。该方法基于应用于自定义数据集的深度可分离网络模型,在软件端使用迁移学习、敏感度分析和剪枝量化的步骤进行模型压缩,在硬件端分析并设计了适用于有限资源FPGA的流水线硬件加速器。实验结果表明,经过软件端的网络压缩优化,这种量化... (共6页)