一种卷积神经网络结合特征融合的网络入侵检测方法
计算机应用与软件
页数: 8 2024-08-12
摘要: 为解决传统网络入侵检测方法中攻击特征过少、数据不平衡及模型收敛速度慢的问题,提出基于卷积神经网络结合特征融合的网络入侵检测方法。将流量数据转为灰度图像提取其纹理特征,再将纹理特征与流量特征进行特征融合以增加攻击特征量。使用Borderline-SMOTE方法对UNSW-NB15数据集进行数据平衡。运用逐层贪婪训练方法优化卷积神经网络模型提高模型的收敛速度。实验表明,该方法的性能... (共8页)