基于改进SqueezeNet的火焰识别算法
中国安全生产科学技术
页数: 8 2024-08-28
摘要: 针对现有火焰识别算法在效率上的不足,设计1种轻量高效的深度学习模型。模型基于SqueezeNet进行优化,引入双分支注意力机制以强化对火焰特征的识别能力,提升模型分类性能;同时,加入残差连接,提高网络的训练稳定性和特征表达能力;通过使用批通道归一化技术提高网络的泛化性能;此外,通过将Fire模块中的3×3标准卷积核替换为深度可分离卷积,进一步降低参数数量和计算复杂度,并通过多个... (共8页)