当前位置:首页 > 科技文档 > 水利水电 > 正文

基于主要驱动因子筛选法和深度学习算法的浙江省动态需水量预测

水利水电科技进展 页数: 7 2024-03-10
摘要: 收集了浙江省2000—2020年各用水行业需水量数据,采用基于Spearman秩相关分析的主要驱动因子筛选法筛选了影响各行业需水量的主要驱动因子,进而构造了改进的长短时记忆(LSTM)神经网络需水量预测模型,对各行业需水量进行动态滚动预测,并将改进LSTM模型的预测结果与传统单变量LSTM预测模型、卷积神经网络模型、支持向量回归模型的预测结果进行了对比。结果表明,基于主要驱动因... (共7页)

开通会员,享受整站包年服务立即开通 >