跨域联合学习与共享子空间度量的车辆重识别
中国图象图形学报
页数: 17 2024-05-16
摘要: 目的 现有的跨域重识别任务普遍存在源域与目标域之间的域偏差大和聚类质量差的问题,同时跨域模型过度关注在目标域上的泛化能力将导致对源域知识的永久性遗忘。为了克服以上挑战,提出了一个基于跨域联合学习与共享子空间度量的车辆重识别方法。方法 在跨域联合学习中设计了一种交叉置信软聚类来建立源域与目标域之间的域间相关性,并利用软聚类结果产生的监督信息来保留旧知识与泛化新知识。提出了一种显著... (共17页)