基于物理信息神经网络的气膜冷却湍流模型反演学习
动力工程学报
页数: 7 2024-09-15
摘要: 由于气膜冷却问题中湍流的复杂特性,传统雷诺平均(RANS)方法会低估湍流的热扩散强度,导致冷却效果计算不准确。对此提出了一套基于物理信息神经网络(PINN)的湍流建模框架,基于RANS流场和大涡模拟(LES)温度场,建立了数据驱动的湍流普朗特数神经网络模型,在RANS求解器中嵌入该模型,可以动态调整湍流的热扩散强度,获得了与LES高度一致的温度场。结果表明:PINN是构建数据驱... (共7页)