填充性载荷:减少集群资源浪费与深度学习训练成本的负载
计算机科学
页数: 9 2024-05-14
摘要: 近年来,大模型在生物信息学、自然语言处理和计算机视觉等多个领域取得了显著成功。然而,这些模型在训练和推理阶段需要大量的计算资源,导致计算成本高昂。同时,计算集群中存在资源利用率低、任务调度难的供需失衡问题。为了解决这一问题,提出了填充性载荷的概念,即一种在计算集群中利用空闲资源进行计算的负载。填充性载荷的计算资源随时可能被其他负载抢占,但其使用的资源优先级较低,资源成本也相对较... (共9页)