在透水性突变的界面上,如水流斜向通过界面,则会发生折射。这一现象是由界面上水流连续性条件引起的。设介质Ⅰ的渗透系数为K1,介质Ⅱ渗透系数为K2,界面上某一点附近的渗流速度和水头在两介质中的值依次为v1、v2和H1、H2,如图...[继续阅读]
海量资源,尽在掌握
在透水性突变的界面上,如水流斜向通过界面,则会发生折射。这一现象是由界面上水流连续性条件引起的。设介质Ⅰ的渗透系数为K1,介质Ⅱ渗透系数为K2,界面上某一点附近的渗流速度和水头在两介质中的值依次为v1、v2和H1、H2,如图...[继续阅读]
在自然界中很常见的非均质岩层多是由许多透水性各不相同的薄层相互交替组成的层状岩层。每一单层的厚度比其延伸长度小得多(图2.5.9)。其平行于层面的渗透系数Kp和垂直于层面的渗透系数Kv不等。图2.5.9层状岩层中平行于层面的...[继续阅读]
2.6.1.1势函数和流函数首先讨论势函数φ,由达西定律得:因为H=z+p/γ。z表示单位质量液体的位置势能,p/γ为单位重量液体的压强势能。为了方便,引进一个新的标量,即势函数:达西定律又可以写成:势函数φ在一般情况下是时间和空间坐标...[继续阅读]
在任一流网图(图2.6.5)中,若上下游边界处的等势线的势能分别为φ1和φn,则两边界线范围内的总势能为(φ1-φn)。若两边界等势线范围内等势线的间隔数为n,则每一网格内势能的损失值为:图2.6.5流网图的应用对于从上游至下游方向,间隔...[继续阅读]
2.1写出下列压缩系数的表达式,并说明其含义:(1)水的压缩系数;(2)多孔介质的压缩系数、多孔介质固体颗粒压缩系数、多孔介质孔隙压缩系数。2.2什么是贮水率,其物理意义是什么?什么是贮水系数,其物理意义又是什么?弹性释水的物理...[继续阅读]
在渗流场中,各点渗流速度的大小、方向都可能不同。为了反映一般情况下液体运动中的质量守恒关系,就需要在三维空间建立以微分方程形式表达的连续性方程。设在充满液体的渗流区内,以p(x,y,z)点为中心取一无限小的平行六面体...[继续阅读]
由于对于区域性地下水运动,含水层厚度与地下水水平流动方向的长度相比是很小的,可以假设,地下水流动主要是沿水平面方向进行,垂直流速可以忽略,只考虑垂向压缩。于是,只有水的密度ρ、孔隙率n和单元体高度Δz3个量随压力而变...[继续阅读]
在自然界中有不少这样的情况,承压含水层上、下的岩层并不是绝对隔水的,其中一个或者上下两个可能都是弱透水层。在这种情况下含水层就可能通过弱透水层和相邻含水层发生水力联系,但它还是承压的,因此,称它为半承压含水层。...[继续阅读]
潜水面不是水平的,含水层中存在着垂向上的流速分量。潜水面又是渗流区的边界,随时间变化,它的位置在问题解出以前是未知的。为了较方便地求解,就引出了Dupuit假设。Dupuit于1863年根据潜水面的坡度对大多数地下水流而言是很小的...[继续阅读]
根据Dupuit假设,可以建立有关潜水含水层中地下水流的方程。潜水面是个自由面,相对压强p=0。因此,对整个含水层来说,可以不考虑水的压缩性。先考虑一维问题。取平行于xoz平面的单位宽度进行研究。在渗流场内取一土体(图3.4.3)。它...[继续阅读]